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COMPRESSION SHOCKS OF DETACHED FLOW
By Eggink
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Every effort is made by the NACA to insure that 1ts published
translations are accurate reproductions of the original work of the
authors. DPapers are selected for translation on the basis of interest
and probable usefulness and, although an examination is made for
technical soundness, the Committee camnnot assume responsibility for
the accuracy of the detailed results presented by the author in the
original paper. The Committee will of course call attention to any
errors observed at the time of publication or subsequent thereto.

Analysis of NACA Technical Memorandum No. 1150 has disclosed
that the principal result of the original paper is in error. The
compatibility of the three branches of a A-shock (Y—shock, branch-
shock, fork-shock) in a supersonic flow is granted at crossing points
of two supersonic arcs corresponding to two opposite femilies of
characteristics and one common subsonic arc ending at the sonic line.
The further continuation is sometimes rather the characteristic of
the same family than the supersonic arc of the shock polar itself
corresponding to the opposite family. Such cases with characteristics

are not considered by Eggink. Therefore, his classification of A-shocks

and the sensational result that A-shocks cannot exist below Mach
number 1.245 is without any value. Obviously A-shocks are possible at
all supersonic welocities and their appearance is without any special
Physical significance.
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NATIONAYL ADVISORY COMMITTEE FOR, AERONAUTICS

- e TECHNICAL MEMORANDUM NO. 1150

COMPRESSION SHOCKS OF DE'\CHED FLOW*

By Eggink
SUMMARY

It 1s known that compression shocks which lead from supersonic to
subsonic veloclty cause the flow to separate on impact on a rigid
wall. Ouch shocks appear at bodles with circular symmetry or wing
profiles on locally excesding sonic velocity, and in Laval nozzles
with too high a back pressure, The form of the compression shocks
observed therein is investigated.

I. INTRODUCTION

The preessent investigation of the forms of shock proceeded from
schlleren obesrvations of wing profiles and an investigation of the
formsg of shock in Laval nozzles with too high a back-pressure.
Schlieren photographs of the shock forms in Laval nozzles have
been published already in FB 1756,

Tn observing shock it is necessary to be sure to have a
suitable adjustment of the schlieren optical system. Good
dofinition of the shock form can be obtained with the schlieren

; edge perpendicular to the flow, and bright shock lines against

‘a a derk field. Small tunnel breadth ylelds sharp shock lines,

: while the shock is no longer perfectly plane and appears streaked.
The observation is often dlsturbed by violent flubttering of the
shock, Then the shock appsars to the eye as a broad streaked band
and. in photographs, as a set of shocklines. (Compare fig. 3.)

#'HUher Verdichtungsst¥sse bel abgel8ster Strimung," Zentrale
fiir wissenschaftliches Berichtswesen der Luftfahrtforschung des
Generalluftzeugmelsters (ZWB) BerlinrAdlershof, Forschungsbericht
Nr, 1850, Aachen, Aug. 12, LQh3
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II. THE ASSORTED SHOCK FORMS

Tt will be assuméd that there is a compression shock in a
superscnic flow. If this shock encounters a rigid wall, there
are three ooses to distinguish. (See figs. 1(a)to Ue).)

(a) The shock runs perpendicular to the wall; the flow does
not separate.

{(b) The shock runs obligue to the wall; the Flcw separates
from the wall,

(¢} The shock branches into two separated shocks in front
of the wall, '

In case (b) the flow generally returns to the wall after flowing
vast the dead space, since the nressure sradient directed agsinst
the wall downstream from the bent shock forszes the streamlines
against the wall. From the observation that the flow behind the
shock is along the wall again, it cannct be inferred, therefore,
whether case (a) or (b) is presert. (Comrare fig. 2.)

In contrast tc case (t), which is observed shortly after
excerding sonic velocity, the tranch of {c¢) (fig. 3} is first
observed at higher Mach numbsrs. In egreemsnt with this, it follows
from the theory of the branching in Section III, that a branching
first comes into existence for

ME= — 1,101
or

= E>
w=L> 1,25

The schlieren obtservations of the branch show, that the
nrincipal shock A-D is bsnt, in general, and the branch shock
lines A-B and A-C can be regarded as practically straight. By .
this the strsam boundary B-C is taken as straight and the vressure
is assumed constant in the dead space along this boundery.

(If the flow is elready detachéd weakly upstream by comsiderable.
roughness of the wall, then a fan of shock lines, which come
together in the principal shock forms in vlace of the branch.)
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The flow in the vicinity of the branch point is computed in
Ssction III. _This gives as a result the shocks coming together
at the branch point A and, with that, the shock lines A-B and A=(C
as functions of the flow and the diversion of the flow in the

separation point B or the pressure in the lead space.

IIT, THEORY OF BRANCHING

1. Stateﬁent and Execution of the Solution

The individual compression shocks coming together in the
point A are shewn in the familiar shock-polar diagram of
A+ Busemann. The streamline A-E, which vasses through the
branch point, separates the two flows (3) and (l) (fige L)
behind the shock.

The pressure P in (3) and (L) must be equal along this
boundery, and the directions of the velocities in (3) and (1)
be parallel to it. The different increase of entropy from
‘ (1) %o (L) and (1) to (3) yields a discontinuity in the velocity,
i, temperature, sand density across the boundary.

. The flow (1) corresponds to the shock pole Mj# in the polar

| diagrem (fige L) on which (2) and (L) 1ie. (3) lies on the shock
e pole Me* which was defined by means cf (2), which is variable.

The conditions required at the seraration line:

5= R,
Sas+dz=) | (1)

suffice to ascertein the points (3) and (l) for each Mo* or $2.
In the dimensionless formulas for the compression shock the
rressure p  is referre3 to the statlic pressure of the flow,

Po (gi, pressure ratio} .« The crooked shock A=-B from (1) to (2)
o - = . 4 -~ [ NERN - a TR

e [T S e o " < dare 50 e OS4SRt S 8 e icmerng it s+ g Ao

* *hs oan be seen in the Techn, Berichten Bd., 10 (19L3).
Heft 2, Prof, A, Weise DVL likewise worked with branch shocks -
‘and computed the special case of branching with s straight
prineipal shock, '
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reduces the static pressure to ’So. On the shock polar Mo¥* the
pressure is therefore to be referred to ?%. The abbreviation x
is used for the nressure ratio of the flow that characterizes the
shoek polar, the abbreviation. y for the pressure ratio along
the shock polar, and indicate with the pressure ratio referred

to pye According to figure Ls

Pl____ gg-——
I | ~ - x
Po P,
P2 P3
— --ya == Y t
p‘O "5.0 3
P,
—— y
Po h
Equation (1) is referred to p, yields:
. ~ .
t po =
V3 Po Yy
Pariz=ay (2)
~

The ratio of the static pressures 52 is known to be a function
o
of yp and xe The formulas for the compression shocks are

assumed as known.?

The angle of deflection & of the flow follows as a function
of y and x froms

;

®For further detail concerning the fundamental equations.of
the compression shock and the formmlas derived therefrom, see:
Re Sauer "Theoret. Einfilhrung in die Gasdynamik,” Springer 19L3.
The dcsignations chosen there have besn retained here.
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| . _
g k
?&‘j - x . k+1 x- 3
A L K2 -1 k-1 y=-x
3 =£(x,y) = arc tanj ,
; - k-1 2k F ke
: b i y . - veerenae X -
I k + 1 k-1 k-1
- : E - By
and the static-pressure ratio =— as a function of the flow
x; and y, from:3 . Po
2 .
zi . \ kkl
’ k=1 - k-1 ‘ =
{ % Dluya)= (Lr) ()t EETE (L)
8 —— 22 X = e |
| P L¥2/m \r -1y ¥ * + 1
i Yo *

h
!

if equation (3) is set up with the same indices es in equation (2):
£(riy)™ 2(rpv) + £ (s )

and with the use of equation (L):

Yo

Yz
x, V= =
VoBopg 9 fueva)

from equation (2).

¥

- as well as y;' =
' @(xl:}'g\,

. ®Eliminating the shock angle O from equations (129) and (130)
on page 65 of "Theoret. Einfuhrung i.d. Gasdynamik," leads to
equation (3); correspondingly, equation (L) is obtained from
equation (129) page €5 and equation (150) page 77.
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y2 ) Y)_'_
, _
o(x;,72) @(x1,55)

£(xy,3y) = £(x,¥0) + £

it is seen that the unknown - Iy ¢annot be computed explicitly
as a result of the complicated function £, | '

The solution of equation (2) ig obtained graphically. The
following construction is suiteble to this end (fig. 5). The ¢
distribution of the shock polar Ml* (= Ml* - distribution)

d = f(xlsy) from equation (3) is plotted against the pressure

ratio y. The 9 distribution of the shock pq}ar My¥*

i
( = My* - distribution) is plotted sgainst ¥ 53 displaced
(o}

parallelgise by ﬁe. The exaggeration of the y-exis by the

factor g% refors thé ?ressure of thgishock polar M * to p,.
With thet, the sterting poimt X', since i)' 5% =y, &t the
point 82’ coincides with yé of the M;* — distribution., The

points of intersection of the two distributions furnish the desired
solution, since the conditions of equations (2) are satisfied here

with 95 + 93 = @g end  y,' 5% = ¥),-

In carrying out the construction, the P distributions were
computed for M;* = 1.,1; 1.2; o s o 2.2; 2,3 and for MQ* at any
instant the smaller valuwe was chosen, for example, for Ml* = 2,0,
Ma¥* = 1.9; 1.8; . . . For M * there ave intervals in which the

golution shows various relations. The boundary values for these
intervals as well as the "limiting points" mentioned in the
following are treated in the next section.

The mammer in which the various solutiong in the individual
intervals are accounted for in terms of relation of intersection
points is schematically 1llustrated in Section 6-8.

I 1.191 z'Ml* >1 then the M2* — distribution 1lies in the

interior of the M;* - distribution (fig. 6). A branching of the

shock does not take place in this region, therefore.

-The interval 1,842 >Mp¥ > 1,191  provides a point of intersection
(fig. 7). At the starting point x; the. My¥* - distribution

coincides with the My¥* — distrihution, The Mé* — digtribution
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displaced from x; -with respect to the M;¥*.- distribution by a

differential shows the "limiting point" a. The point of inter—
section moves out from e with diminishing M * along the

~ distribution up to the limiting point b, On the variable
Mg* — distributions, the intersection point epproaches the starting
point ¥, of the My¥* — distribution, in doing so. At the limiting

point b, the intersection point coincides with the starting point
of the M?_* - digstribution., Here Mg* reaches a lower limit below
which there 1s no solutlon, since the M2* - distribution lies within
the Mp* — distribution for smaller ‘values of Mg*. '

If My*> 1.842, there are two points of intersection, which

run out from the limiting points a and c¢ (fig. 8). At the
limiting point a, the variation of the one intersection point
¥nown from the preceding interval ecommences, and terminates at the
limiting point b. The second intersection point starts out at

~the limiting point ¢ and coincides at the limiting point 4

with the starting point of the appropriate Me* — distribution and,
thereby, terminates the ambiguity. Near a lower limit for ME*’
below which there is no longer a solution (limiting point D)

there is a lower 1limit at which the amblgulty vanishes (limiting
point a).
2, Obtaining the Limiting Values Limiting Polnts a and ¢

At the intersection point of the M,%* — distribution and

po
My* < dlstribu’cion, displaced by Ax, 3 = £xy + Ax) =yt o
: 0 o

the following is valid according to figure 9:
) B

‘= 9 S —-9- = =
9 It 4+ AL yt e y yg
or a -
 ax) 22 (xy,75) = =9
£1(; AX) e - (X ,¥,) =
and . n
(xy + &) =2 yg] £(xy,7,)
lxg + — -
iim | 1 Po 1*7e - lim%xﬁ
Ax—30 - = Ax—>0
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and right side goes to tan f1 in the transition at the limit,
ecoording to figure 9; this 1s the direction of the Mj* -

distribution et X3

It is:.

. af X1sY
‘tan By = (by )

the left side goes over th@ partial derivative of f with respect

to x at x= x1 since ——~d—J>1 for Ax ~~$ 0. It follows that

?_f"x,}g‘) I _éf(xl,y) : (5)
E)x‘ X = X3 éy ¥y =x '

The quarklty Ve Which defines the limiting points a and ¢ 1is
oomputed from equation (5). Differentiation of squation (3) vields:

/ | k=1
éf(ﬂl,y) \/k—l Vd-(k+1\ xlT (6)

()J Y Xl k + 1 : . ‘{;1
X1 2k 1« "

tan By =

i
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_and

1
i 2 L
E-1™ TFETTA
- 3
(21{ koo
‘ 1 X R S
§ \_k'l k-1 Ly
i
{
k-1 |
4+ 1 1 '
- - ; (7
/ k-1 .} ¥y, % |
{ g 1
2\\yg+k+11>~ f
1

in which 9 1is to be taken from equation (3) with x = x; and
Y= Vg
' The quantity ¥g» defining the limiting points a and ¢

can be obtained only by approximation from equations (5), (6),
and (7). ‘

Limiting Points b and 4

\

According to figures (7) and (8) thz intersection point of
the M1* - and the My* - distribution falls on the limiting
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points b or d .at the starting point of the Mp* - distribution.
Here, therefore, both curves have two points in common, that is,
they have a common tangent, or the direction of the Ml -

distribution = tan ap at the voint yp agrees with the dlrectlon
of the Mp¥ - dwtrlbutlon at’ the e’ca.rtﬂng pom.t < tan Bo.

tan ap = tan Bp ‘ (8)

The dirsction at the starting point of the Iug - distribution
follows from differentiation of equation (3). (Compare equation (6).)

tan ‘32 = ’/\ r\
PO/PC' °y! y'= Xo
S / T k
-1 V.Z.‘(k*\l)_#r‘?'
P - g S .—l Ay

25 g - mp

xe'

In the denomin.ator the exaggeration of the y-axis by the
P

0 i
fastor P mentioned above’ for the lip* « distribution, must
o) , '

be taken into consideration. If




N
P
and — from equation (L) are substituted, it follows after calculation:
) A
o1 4 (e - 1) v v, + k+ 1 AI . k+1
—- yp )= (k= 1) 3 X x :
k-1 1 k+11 2 e\Ve TN T T j
tan fp = - ' , .
2kffkc - 1 v, |
1 ' / '
* T - | )
1 ' o
k

»

[we]

N k. - 1 . k - k+ 1
1 \gri ¥ ia\e” lk—l

‘Differentiation of eguation (3) gives the direction of the Ml*/r}'- distribution at the
point y ='yp with 4 from equation (3) as: : ’

1 : 1 1 1
tan a2=§.sin 29 + -
2k _k+1 Yo - 2’+k-1
- Xy =Y g x
k-1 %Y k-1t 72 2 g+ 1t
1 ‘ ’
- (10)

OGIT °*ON NI VOVN

1T

s ) e A = T, ey e e LI

|
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Here too, the quantity yo sought for is obtained only as an
approximation from equations (8), (9), and (10).

The Intervel Limits

Figures 10 to 12 show the variation of the curves tan as
end tan B2 with y3 for fixed Mj#%, in the various intervals.,
The intersection points of both curves furnish the yp - values
of the limiting points b and d. :

Both intersection points approach the starting point x3 of
both curves with diminishing Mi*. First of all, d, coincides
with x3; because of this ambiguity vanishes, since only the
limiting point ‘b still exists. The variation in curve of
figure 10 goes over to the variation of :the curve in figure 11,

Then b coincides with x7 and the variation of the curve
corresponds to figure 12. The vanishing of the limiting point b
is only vossible, however, if the Mp* - distribution lies within
the M1* - distribution. Here the lower limit for Mj* 1is reached,
accordingly, below which there is no solution. The curves tan ap
and tan Bp agree at the point y = x3 in magnitude and direction,
that is: :

tan a, = tan Pp - (11)

O tan ap _ O tan Bo
Oy Cy

(12)

The somewhat detailed proof of these relations by equating and
differentiating equations (9) and (10) is passed over here.

Since +he directions of both curves at the point X, agree,
the coincidence of the intersection points b and d with x3
means that the curvature.of both curves agree at the point xj.
Therefore, with equation (12) the two second derivatives of both
curves are equal. '
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3% tan aevz‘ég tan Po
s 2y%

(13)

The interval limits gought for follow from equation (13)

Taklng the partial derlvativp of equations (9) and (10)
and substituting in equation (13) leads after a detailed calculatien,
which will not bs entered into here, to an algebraic equation of
the fourth degree in xj. By means of the solutions x;, =1

and xqy = 1, these reducs to the folloWLng equation of the
second degrest : o

/, 1 k~
Kfl k/) + L - 2) k-2 = 0

k + 1
with the solution:
k-1
x; £ o=a(x-2) gz k=1
Y x+1
or with:
k=1
ko k-1 w0
x] -—1-k+1]'\”.1

solved for Ml*:

e s

| TN
M*e = (X + 1)(1: - 1)

. .

This gives: The lower limit for the ambipguity lies at Ml* = 1,842
or "My = 2.568; the limit, below which there is no solution, lies
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3« Plotting ihe Poléstﬁéék“biagram
N\

The result of the construction and calsulation is displayed
in the polar-shock diagram (see appendix). :

Mz is given, with cdlculated value for yl, according to _
figure 5 and the voint {3} according to figurs L. = The points (3) are
computed for the flow K.* at any given instent are plotted
on the veriamble-shock pelars Mo*, and joired (fig. 13) by a
curves The curves begin at the shock polar Mjp*, at the limiting
peint a or ¢ and end on the axis of the diagram at ¥ that
corresvonds to the limiting points b and ds In the shock-
polar dingram the voint (L) or %) (fig. L), for given point (3)

or ¥ is defined from equation {2):

A

W

2.

Whether (}}) lies on the supersonic or the subsonic side of the
shock-~pclar follows from the variation of additional points. The
lower limiting line for U,¥*, below which there is no branching,
is the comnecting line of the limiting-points b (curve b).

The lower limiting line for the ambiguity is the connecting of
the limiting points d (curve d).

The values of Mp* for which = 0, therefore, for which
the shock A=D becomes straight, are determined from the inter-
gection point of the curve e morked with little lines with the
shock molar hiy*, If e coincides with the starting voint of the
shock polar, then the limiting voint a must lie on the axis of

.tho disgram, since the limiting point & corresponds to the
"solution" ut the starting point of the shock-polar and 3)4= O
This conditicn used in squation (5), (6), and (7) yields:

2k

———

/2 Sc'"l . /’!k‘+l.§"_' /2 2;
x] ~K or My -1/ S—— !1 -(k‘l- 1> ,'—1-353

as the intersection'point of the curve e with the axis of the
diagreams (It is know that the maximum of: the pressuré for this
value is behind o straight shocks)

In figure 1l the branching with straight principal shock is
shown for various My , in figure 15 the branching with fixed

M;* = 1.5 and ¥p +arisble.
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IV, SUMMARY

Schlieren observations show & branching of the compression
shock in the vicinity of a fixed walle The flow in the vicinity
of the branching point is computed, and the result displayed in
a shoock-polar diagram. -

4 branching of the shock only appears for Mj*> 1,191
(M1 > L.245). If My* > 1.8L2 (M3 > 2.546), then two solutions
existe If M3* 1lies between 1.191 and 1.353 the principel
shock is oblique, the branching deflects the flow direction
positively, only for M;*> 1.353 (M1 > 1.4BL) the flow direction
‘is deflected both positively and negatively. here a branching with
a straight orincipal shock becomes possible. The second solution
for M;* > 1,842 yields only a positive deflection of the
flow directione

Transleted by Dave Feingold
National Advisory
Committwe for Aeronautics
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Figure 1. a-c The different shock forms.
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Figure 2. Shock form in a laval nozzle.

Figure 3b.

I N e ar

Figure 3a. At a wing profile
(taken by Ackered) Figure 3c. In a laval nozzle.

Figure 3. Branched shocks .
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Figure 4. Flow field and shock-polar diagram.
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Figs. 6-8
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Figure 6.
17912M7 >1

Figure 7.
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Figure 8.

Figures 6-8 The position of the intersection points in the intervals.
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Figure 9. Determination of the limiting points a and c.

Fig. 9
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Figure 10.
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Figure 11.
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Figure 12.
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Figures 10-12 Determination ¢f interval limits.
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Figure 13. Plotting in the shock-polar diagram.
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MY 138 140 145 150 160 170
B8  18° 27° 54° 75° 71,5° 748°
M* 1350 1349 1345 1350 1378 1421
MY 0741 0745 0,765 0788 0846 0921
MY 0725 0715 0,690 0,666 0,625 0588

Figure 14. Branching with straight principal shock.
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M, =15 M= 1763
B, 0 4° 8° 12° 75° 16,5°
M 150 1,421 1335 1,231 1126 1062
Sy, | 1140 _100° _69° -28° +23"° 00°
m¥ 0720 0759 0792 0823 0920 - 1062
% | 114’ -60° ~17° +42° +173° +165°
i | 070 0679 0,666 0606 0879 1062
Figure 15. Example of a branching, with fixed flow.
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Appended chart: Polar-shock diagram for branched shocks.
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